TDHF Calculations of ²³⁸U+²³²Th

Ian Jeanis SJY group | Texas A&M Cyclotron Institute Motivation

- Super heavy elements have been synthesized from heavy element fusion which has resulted in neutron poor super heavy elements.
- Multinucleon transfer is explored to synthesize more neutron rich super heavy elements.
- TDHF is used to simulate the reaction ²³⁸U+²³²Th to study multinucleon transfer of heavy elements.

Background

Multinucleon transfer:

- Multinucleon transfer is when nuclei interact, exchange nucleons, and separate as different nuclei.
- Quasi fission is when nuclei exchange nucleons with mass flow from the large nuclei to the smaller nuclei
- Inverse quasi fission is when mass flow is from the smaller nuclei to the heavier nuclei.
- Energies close to the coulomb barrier.

Background

Time Dependent Hartree-Fock (TDHF):

- TDHF is a microscopic model
- TDHF generates boundaries for the reaction.
- This is used to study reactions from central to peripheral collisions.
- ²³⁸U and ²³²Th are both deformed nuclei
 - Studying 3 cases.
 - Resulting in 9 different orientation.

Example reaction:

- U and Th come into contact
- Neck forms and nucleons transfer
- The nuclei rotate to conserve angular momentum
- Separate as two new nuclei

Contact Time

- The reaction is consider to be in contact when the neck density is $> 0.016 \text{ u/fm}^3$.
- Various combinations of orientations.

Contact Time

- The reaction is consider to be in contact when the neck density is $> 0.016 \text{ u/fm}^3$.
- Various combinations of orientations.

Contact Time

- The reaction is consider to be in contact when the neck density is > 0.016 u/fm³.
- Various combinations of orientations.
- Longest time approximately 2.2 zs or 650 fm/c
- The orientations have a large impact on the reactions.

Mass U Fragment

Angular momentum \hbar

Angular momentum \hbar

Angular momentum \hbar

Proton

Exit angle vs mass 180 160 140 Θ_{c.m.} 120 Angle 0 80 80 80 60 U fragment 40 Increasing Angular 20 momentum 0 240 255 210 215 220 225 230 235 245 250 260 Mass

уу

yz

ZX

XZ

ух

ху

XX

ZZ

zy

Conclusion

- Resulting fragments depend on orientations of the starting reactants.
- Reactions show the greatest transfer of nucleons occur at the lowest angular momenta.
- Products show greatest mass transfer of 17 nucleons , 11 neutrons, 6 protons.
- TDHF gives expectation values.

Thank You

Acknowledgement: SJY group, Welch foundation, National Science Foundation.

S. Wuenschel et al. Phys. Rev. C 97, 064602 (2018)
K. Sekizawa et al. Phys. Rev. C 88, 0146114 (2013)
D. J. Kedziora et al. Phys. Rev. C 81 044613 (2010)
A. Wakhle. Thesis (2013)